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Synchronization of chaotic systems has been studied extensively, and especially, the possible applications to
the communication systems motivated many research areas. We demonstrate the effect of the frequency band-
width limitations in the communication channel on the synchronization of two unidirectionally coupled
Mackey-Glass �MG� analog circuits, both numerically and experimentally. MG system is known to generate
high dimensional chaotic signals. The chaotic signal generated from the drive MG system is modified by a low
pass filter and is then transmitted to the response MG system. Our results show that the inclusion of the
dominant frequency component of the original drive signals is crucial to achieve synchronization between the
drive and response circuits. The maximum cross correlation and the corresponding time shift reveal that the
frequency-dependent coupling introduced by the low pass filtering effect in the communication channel change
the quality of synchronization.
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Since Mackey and Glass suggested a mathematical model
to describe the dynamics of a physiological control system
�1�, there have been numerous studies on the Mackey-Glass
model �2–10�. The Mackey-Glass model is described by a
first-order delay differential equation

dx

dt
=

ax�

1 + x�
n − bx , �1�

where x is the variable of interest at time t, x�=x�t−�� is the
time-delayed variable with a fixed delay time �, and a, b, and
n are constant parameters. For most of the numerical studies,
the delay time is used as a control parameter with the param-
eter values of a=0.2, b=0.1, and n=10. It is known that the
system shows steady, periodic, and chaotic dynamics as the
delay time is varied �2�. It is also known that the dimension
of chaotic dynamics increases linearly proportional to the
delay time �2�.

The synchronization of chaotic systems has been investi-
gated extensively because of its potential applications in
communication �11–15�. Practically, however, there exist
transmission channel effects, such as bandwidth limitation,
phase distortion, amplitude attenuation, and channel noise,
and there have been few studies on the synchronization of
chaotic systems with transformation due to the channel
�16,17�. In this paper, we investigate the properties of syn-
chronization when the signal from the drive system is altered
by the frequency bandwidth limitations in the communica-
tion channel. Two unidirectionally coupled Mackey-Glass
analog circuits are used as a drive and a response circuit, as
shown in Fig. 1�a�. A chaotic signal generated from the drive
circuit passes through a low pass filter �LPF� in the channel
and becomes an input to the response circuit. An open-loop
configuration is used for the response circuit in order to

achieve a better quality of synchronization of chaos.
An electronic circuit imitating the behavior of the MG

system is constructed based on Ref. �7� with slight modifi-
cations. As shown in Fig. 1�a�, each circuit contains a delay
unit, a nonlinear device �ND�, and a fixed RC filter, as
demonstrated by Namajunas et al. �7�. The nonlinear device
consists of coupled junction field effect transistors �JFETs,
2N5461 and 2N5458�, and Fig. 1�b� plots the output vs input
voltage transfer curve from experimentally obtained data
�18�. The delay unit is an LC network with the cutoff fre-
quency of around 40 kHz. The delay resolution is 6.86 �s,

*Electronic address: mmyykim@glue.umd.edu

FIG. 1. �a� Schematic diagram of two unidirectionally coupled
Mackey-Glass analog circuits with an open-loop configuration for
the response circuit. ND1 and ND2 are nonlinear devices; Td is
delay time in seconds; R1 and R2 are resistors; C1 and C2 are ca-
pacitors; LPF is a low pass filter in the communication channel; U1

and U2 are the voltage across the capacitor C1 and the voltage
across the capacitor C2, respectively. VD�t� is the output from the
drive circuit, and VR�t� is the output from the response circuit. Vin�t�
is the input to the response circuit. �b� The nonlinear device char-
acteristic curve.
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and the fixed delay of �180 �s is used for our experiments.
The parameters of each fixed RC filter
in Fig. 1�a� are matched closely with R1=R2=2.35 k�,
C1=C2=11 nF; thus, the time constant is R1C1=R2C2
�26 �s and the corresponding cutoff frequency is 6.1 kHz.

From the circuit model, the voltages U1�t� and U2�t� can
be described by

R1C1
dU1�t�

dt
= ND1�cU1�t − Td�� − U1�t� , �2�

R2C2
dU2�t�

dt
= ND2�Vin�t�� − U2�t� , �3�

where R1 and R2 are resistances, C1 and C2 are capacitances,
Td is the delay time, and c is the feedback gain on the delay
loop. ND1 and ND2 are the transfer functions of each non-
linear device. Vin�t� is the input to the response circuit. With-
out LPF in the channel, Vin�t�=AcU1�t−Td�, where A denotes
the dc attenuation. An LPF in the channel, on the other hand,
creates a frequency-dependent attenuation.

We introduce dimensionless variables and dimensionless
parameters

cU1�t�
U1s

= x�t�,
cU2�t�

U1s
= y�t�,

Vin�t�
U1s

= yin�t� , �4�

t

R1C1
= t�,

Td

R1C1
= �,

R2C2

R1C1
=

1

b
, �5�

where x�t� is the drive signal, y�t� is the response signal,
yin�t� is the input to the response system, and b corresponds
to the mismatch in RC constants. Nonzero U1s is chosen such
that ND1 �U1s�=U1s. The coupled equations become

dx

dt�
= c�1�x�� − x , �6�

dy

dt�
= b�c�2�yin� − y� , �7�

with �1�x�=ND1/U1s, �2�x�=ND2/U1s. Since each
equation is isomorphic to Eq. �1�, we approximate
�1�x�=�2�x�=2x / �1+x10� for the numerical simulations, as-
suming identical transfer characteristics for both circuits.

In our experiment, the delay Td is fixed at �180 �s and
the feedback gain c is used as a control parameter �19�. By
increasing the feedback gain experimentally, we can observe
that the dynamics of system change from steady through
periodic to chaotic state. Figure 2�a� shows the chaotic time
series taken from the drive circuit. The corresponding power
spectrum in Fig. 2�b� shows periodic peaks in addition to the
broadband spectrum. The dominant peak is located at the
fundamental frequency of the delayed feedback loop,
f1=2.7 kHz�1/ �2Td�. Figure 2�c� is the phase portrait of
the signal VD�t� vs the delayed signal VD�t−Td�. All subse-
quent experimental results presented in this paper are ob-
tained using the same feedback gain as in Fig. 2.

To investigate the properties of synchronization with the

frequency bandwidth limitations in the communication chan-
nel, we used two types of low pass filter, a passive RC filter
and an active two-pole Chebyshev filter �20�, and varied the
cutoff frequency by replacing resistor and capacitor compo-
nents. The 3 dB cutoff frequency, fc, was approximated in
each case. There was no dc gain adjustment made for an RC
filter, whereas for an Chebyshev filter, the dc gain was
adjusted every time fc was changed.

Figure 3 shows the time series from the drive and re-
sponse circuits �left column�, and the phase portraits from
the response circuit �right column� at different conditions of
LPF in the communication channel. Without any filter �top�,
the response system exactly follows the drive system
and reconstructs the same phase portrait as shown in Fig.
2�c�. With a passive RC filter at a cutoff frequency of
fc=12.1 kHz �fc� f1� in Figs. 3�c� and 3�d�, the fast oscilla-
tions are removed in the response system, but the phase por-
trait is still similar to that of the drive system. With an RC
filter at a cutoff frequency of fc=125 Hz �fc� f1� in Figs.
3�e� and 3�f�, the distortion in the phase portrait is clearly
observed. In both cases with an RC filter, the response sys-
tem follows the drive system with a constant time lag at
reduced amplitude.

For the comparison of two time series, we calculated the
time-shifted cross-correlation coefficient between the drive
output and the response output

C��t� =
��VD�t� − �VD�t����VR�t + �t� − �VR�t����
��	VD�t� − �VD�t��	2��	VR�t� − �VR�t��	2�

, �8�

where angular brackets denotes a time average. Figures 4�a�
and 4�b� show the color map of the cross-correlation coeffi-
cient calculated at different values of a cutoff frequency, with
an RC filter in Fig. 4�a� and with a Chebyshev filter in Fig.

FIG. 2. Experimental chaos. �a� The time series, �b� power spec-
tral density �PSD� in decibels, and �c� phase portrait generated by a
Mackey-Glass analog circuit. The sampling time is 10 �s. The PSD
is obtained using the FFT algorithm and is an average of PSDs from
five consecutive 4096-point time series.
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4�b�. For fc	 f1, the local extrema of C��t� occur at the
multiples of Td with an alternating maximum and minimum
for both types of filter. For fc
 f1, this alternating band
structure is shifted by Td /2 with an RC filter, and by Td with
a Chebyshev filter.

The dependence of the maximum cross-correlation
C�Tmax� and the corresponding time shift Tmax on the cutoff
frequency is plotted in Figs. 4�c� and 4�d� �21�. The vertical
lines are located at the dominant peak of the power spectrum
of the chaotic drive signal, i.e., f1=2.7 kHz for our experi-
mental setup. The maximum correlation is reduced dramati-
cally for fc� f1 and is saturated for fc� f1. In other words,
the inclusion of the frequency components up to the domi-
nant frequency is very important to achieve synchronization
of the response output with the drive output. Once this con-
dition is satisfied, i.e., if fc� f1, the higher frequency com-
ponents with f � f1 do not significantly affect the quality of
synchronization in our system. In addition, Tmax also shows
transition at around the fundamental frequency. As the cutoff
frequency fc decreases below f1, Tmax increases from
180 to 290 �s with an RC filter, and from 0 to 180 �s with
a Chebyshev filter.

To better understand the experimental observations,
we explore the numerical simulations by integrating Eqs. �6�
and �7� with yin�t��=A� IFFT
H�f��FFT�x�t�−����. A
fixed-step fourth-order Runge-Kutta method is used with
an integration time step �t�=0.005, and the linear interpola-
tion is used for the required two midpoint evaluations
of the delayed variables. First, we generate the drive signal
x�t�� starting with a constant initial condition �x0=0.9� on
�−� ,0�. After a transient period �t��200��, the delayed
drive signal x�t�−�� in a time window of 750� is fast Fourier
transformed �FFT�, multiplied by the transfer function

of a low pass filter in the channel H�f�, and inverse
fast Fourier transformed �IFFT� to obtain the input signal
yin�t�� at time t�. The transfer function of an RC filter is
HRC�f�=1/ �j f / fc+1� and that of an active two-pole Cheby-
shev filter is HCB�f�=1/ �−c1�f / fc�2+ jc2�f / fc�+1� where
c1=1.4018 and c2=1.0490. The response signal y�t�� is then
integrated from Eq. �7� using yin�t�� as an input signal with a
zero initial condition. The value of the feedback gain param-
eter c is chosen such that the power spectrum of numerical
time series matches that of experimental time series.

In Fig. 5, we calculate the maximum values of the cross-
correlation coefficient C�Tmax� and the corresponding time
shift Tmax, between numerically obtained drive and response
signals, x�t�� and y�t��, at different values of the cutoff
frequency. Without dc attenuation �A=1�, for the cutoff
frequency much higher than the fundamental frequency
�fc	 f1�, the maximum coefficient C�Tmax� is equal to 1 and
Tmax=0, i.e., the response system is synchronized to the drive
system. Tmax increases as fc decreases below f1, approaching
Tmax=Td with the Chebyshev filter �stars� and Tmax=Td /2
with an RC filter �triangles�. The corresponding maximum
correlation coefficient reduces as fc decreases below f1,
which is more dramatic with a Chebyshev filter. On the other
hand, with dc attenuation �A=0.5�, Tmax is shifted upward by
an amount of Td for both filters, whereas C�Tmax� still looks
similar to the case of A=1. For fc	 f1, C�Tmax�=1 with
Tmax=Td, where the response system is linearly modulated
by the input signal, which is the low pass filtered, delayed
drive signal.

FIG. 3. �Color online� Experimental time series and phase por-
traits. Left column, time series from the drive circuit �upper traces�
and from the response circuit �lower traces�; right column, phase
portraits reconstructed from the response output normalized to its
mean value. From top to bottom, no filter, an RC filter with a cutoff
frequency of 12.1 kHz, an RC filter with a cutoff frequency of
125 Hz, respectively, is used in the communication channel.

FIG. 4. �Color online� Experimental observations. �a� The color
map of the shifted cross-correlation coefficient C��t� �Eq. �8�� with
an RC filter in the channel, at different values of the cutoff fre-
quency fc. �b� Same plot as �a� but with a two-pole Chebyshev filter
in the channel. �c� The maximum cross-correlation coefficient vs fc

and �d� the corresponding time shift at maximum correlation, Tmax,
measured in milliseconds �circles for RC filters and squares for
two-pole Chebyshev filters�. The vertical lines are located at the
fundamental frequency f1=2.7 kHz.
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As mentioned earlier, the dc attenuation in the communi-
cation channel was compensated for a Chebyshev filter,
whereas the dc attenuation with an RC filter was not com-
pensated in our experiments. Therefore, the numerical simu-
lations of the Chebyshev filter without dc attenuation and the
RC filter with dc attenuation, closely approximate the experi-
mental observations. The transition in C�Tmax� and Tmax from
Fig. 5 occurs at a frequency higher than f1 for both filters,
which shows discrepancy from the experimental transition

points. A more precise determination of the cutoff frequency
and a more accurate compensation of the dc attenuation in
the experiments, as well as an improvement of the filtering in
the numerical simulations, will be necessary to solve the
discrepancy.

The dependence of Tmax on the cutoff frequency turns out
to be induced by the phase distortion due to a low pass filter
in the communication channel �22�. Intuitively, since most of
the power in the original drive signal is carried by the domi-
nant frequency component, the filtered signal is shifted in
time from the original signal, by the amount of the phase
distortion occurring at the dominant frequency.

In summary, using a low pass filter in the communication
channel, we studied the effect of a frequency-dependent cou-
pling on the synchronization of two unidirectionally coupled
Mackey-Glass analog circuits. The inclusion of the fre-
quency components up to the fundamental frequency of the
drive signal is crucial to achieve synchronization. In addi-
tion, both the dc attenuation and the phase distortion due to
the low pass filtering effect in the channel play important
roles to determine the quality of synchronization in the
response system.
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FIG. 5. �Color online� Numerical results. �a� The maximum
cross-correlation coefficient C�Tmax� vs the cutoff frequency fc and
�b� the corresponding time shift at maximum correlation normalized
to the delay time. The circles are obtained with an RC filter at
A=0.5, the triangles with an RC filter at A=1.0, the squares with an
Chebyshev filter at A=0.5, and the stars with an Chebyshev filter at
A=1.0. The vertical lines are located at the fundamental frequency
f1 �b=1, c=0.72, �=7�.
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